Phase separation and liquid crystallization of complementary sequences in mixtures of nanoDNA oligomers.
نویسندگان
چکیده
Using optical microscopy, we have studied the phase behavior of mixtures of 12- to 22-bp-long nanoDNA oligomers. The mixtures are chosen such that only a fraction of the sample is composed of mutually complementary sequences, and hence the solutions are effectively mixtures of single-stranded and double-stranded (duplex) oligomers. When the concentrations are large enough, such mixtures phase-separate via the nucleation of duplex-rich liquid crystalline domains from an isotropic background rich in single strands. We find that the phase separation is approximately complete, thus corresponding to a spontaneous purification of duplexes from the single-strand oligos. We interpret this behavior as the combined result of the energy gain from the end-to-end stacking of duplexes and of depletion-type attractive interactions favoring the segregation of the more rigid duplexes from the flexible single strands. This form of spontaneous partitioning of complementary nDNA offers a route to purification of short duplex oligomers and, if in the presence of ligation, could provide a mode of positive feedback for the preferential synthesis of longer complementary oligomers, a mechanism of possible relevance in prebiotic environments.
منابع مشابه
Experimental and Theoretical Study of Phase Equilibria in Aqueous Mixtures of Lactic Acid with Benzyl Alcohol and p-Xylene at Various Temperatures
Liquid-liquid equilibria for the (water + lactic acid + benzyl alcohol or p-xylene) ternary systems were investigated at atmospheric pressure and in the temperature range from 298.15-318.15 K. The studied systems exhibit two types of liquid-liquid equilibrium (LLE) behavior. The system consisting of benzyl alcohol displays type-1 LLE behavior, while a type-2 behavior is exhibited by th...
متن کاملCFD simulation of pervaporation of organic aqueous mixture through silicalite nano-pore zeolite membrane
Nanopore silicalite type membranes were prepared on the outer surface of a porous-mullite tube by in situ liquid phase hydrothermal synthesis. The hydrothermal crystallization was carried out under an autogenously pressure, at a static condition and temperature of 180 °C with tetrapropylammonium bromide (TPABr) as a template agent. The molar composition of the starting gel of silicalite zeolite...
متن کاملSeparation of Aromatic and Alcoholic Mixtures using Novel MWCNT-Silica Gel Nanocomposite as an Adsorbent in Gas Chromatography
The separations of alcohols with hydrophilic and hydrophobic parts, and the separation of aromatic mixtures, are extremely important processes in gas and petroleum industries. Choosing an adsorbent for performing this separation is the most important part of the process. Silica gel is used as an adsorbent is various techniques such as pressure swing adsorption (PSA) and gas and liquid chromatog...
متن کاملPREPARATION OF NANO PORE MORDENITE MEMBRANES
Abstract: Nano pore Mordenite membranes were prepared on the outer surface of ceramic tubular tubes via hydrothermal synthesis and evaluated for dehydration pervaporation of water unsymmetrical dimethylhydrazine UDMH mixtures. Highly water-selective mordenite membranes were prepared and the optimum reaction condition was found to be 24 h crystallization time and 170 °C crystallization temperatu...
متن کاملSeparation of Sedative – Hypnotic Drugs with Mixed Micellar Liquid Chromatography
Separation of ten sedative- hypnotic drugs was performed by RP-HPLC using mixed micellar mobile phase. Effect of temperature, type and amount of organic modifier in mobile phase on efficiency (N) and asymmetry factor (B/A) showed that, the appropriate conditions for a good separation were 35°C and 7% (V/V) butanol in mobile phase. Variations of selectivity factor versus butanol concent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 4 شماره
صفحات -
تاریخ انتشار 2008